Image for post
Image for post

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Machine learning focuses on the development of computer programs that can access data and use it learn for themselves, i know that sounds a little bit confuse but will be clear at the end.

At a very high level, machine learning is the process of teaching a computer system how to make accurate predictions when fed data.

Those predictions could be answering whether a piece of fruit in a photo is a banana or an apple, spotting people crossing the road in front of a self-driving car, whether the use of the word book in a sentence relates to a paperback or a hotel reservation, whether an email is spam, or recognizing speech accurately enough to generate captions for a YouTube video.

The key difference from traditional computer software is that a human developer hasn’t written code that instructs the system how to tell the difference between the banana and the apple.

Instead a machine-learning model has been taught how to reliably discriminate between the fruits by being trained on a large amount of data, in this instance likely a huge number of images labelled as containing a banana or an apple.

Image for post
Image for post

Machine learning methods

Machine learning algorithms are often categorized as supervised or unsupervised.

  • Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to make predictions about the output values. The system is able to provide targets for any new input after sufficient training. The learning algorithm can also compare its output with the correct, intended output and find errors in order to modify the model accordingly.
  • In contrast, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesn’t figure out the right output, but it explores the data and can draw inferences from datasets to describe hidden structures from unlabeled data.
  • Semi-supervised machine learning algorithms fall somewhere in between supervised and unsupervised learning, since they use both labeled and unlabeled data for training — typically a small amount of labeled data and a large amount of unlabeled data. The systems that use this method are able to considerably improve learning accuracy. Usually, semi-supervised learning is chosen when the acquired labeled data requires skilled and relevant resources in order to train it / learn from it. Otherwise, acquiring unlabeled data generally doesn’t require additional resources.
  • Reinforcement machine learning algorithms is a learning method that interacts with its environment by producing actions and discovers errors or rewards. Trial and error search and delayed reward are the most relevant characteristics of reinforcement learning. This method allows machines and software agents to automatically determine the ideal behavior within a specific context in order to maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the reinforcement signal.
Image for post
Image for post

Difference between machine learning and artificial intelligence

Machine learning may have enjoyed enormous success of late, but it is just one method for achieving artificial intelligence.

At the birth of the field of AI in the 1950s, AI was defined as any machine capable of performing a task that would typically require human intelligence.

AI systems will generally demonstrate at least some of the following traits: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity.

Alongside machine learning, there are various other approaches used to build AI systems, including evolutionary computation, where algorithms undergo random mutations and combinations between generations in an attempt to “evolve” optimal solutions, and expert systems, where computers are programmed with rules that allow them to mimic the behavior of a human expert in a specific domain, for example an autopilot system flying a plane.

What is machine learning used for?

Machine learning systems are used all around us, and are a cornerstone of the modern internet.

Machine-learning systems are used to recommend which product you might want to buy next on Amazon or video you want to may want to watch on Netflix.

Every Google search uses multiple machine-learning systems, to understand the language in your query through to personalizing your results, so fishing enthusiasts searching for “bass” aren’t inundated with results about guitars. Similarly Gmail’s spam and phishing-recognition systems use machine-learning trained models to keep your inbox clear of rogue messages.

One of the most obvious demonstrations of the power of machine learning are virtual assistants, such as Apple’s Siri, Amazon’s Alexa, the Google Assistant, and Microsoft Cortana.

Each relies heavily on machine learning to support their voice recognition and ability to understand natural language, as well as needing an immense corpus to draw upon to answer queries.

But beyond these very visible manifestations of machine learning, systems are starting to find a use in just about every industry. These exploitations include: computer vision for driverless cars, drones and delivery robots; speech and language recognition and synthesis for chatbots and service robots; facial recognition for surveillance in countries like China; helping radiologists to pick out tumors in x-rays, aiding researchers in spotting genetic sequences related to diseases and identifying molecules that could lead to more effective drugs in healthcare; allowing for predictive maintenance on infrastructure by analyzing IoT sensor data; underpinning the computer vision that makes the cashierless Amazon Go supermarket possible, offering reasonably accurate transcription and translation of speech for business meetings — the list goes on and on.

Deep-learning could eventually pave the way for robots that can learn directly from humans, with researchers from Nvidia recently creating a deep-learning system designed to teach a robot to how to carry out a task, simply by observing that job being performed by a human.

Who used machine learning?

Most industries working with large amounts of data have recognized the value of machine learning technology. By gleaning insights from this data — often in real time — organizations are able to work more efficiently or gain an advantage over competitors.

Financial services

Banks and other businesses in the financial industry use machine learning technology for two key purposes: to identify important insights in data, and prevent fraud. The insights can identify investment opportunities, or help investors know when to trade. Data mining can also identify clients with high-risk profiles, or use cybersurveillance to pinpoint warning signs of fraud.

Government

Government agencies such as public safety and utilities have a particular need for machine learning since they have multiple sources of data that can be mined for insights. Analyzing sensor data, for example, identifies ways to increase efficiency and save money. Machine learning can also help detect fraud and minimize identity theft.

Health care

Machine learning is a fast-growing trend in the health care industry, thanks to the advent of wearable devices and sensors that can use data to assess a patient’s health in real time. The technology can also help medical experts analyze data to identify trends or red flags that may lead to improved diagnoses and treatment.

Oil and gas

Finding new energy sources. Analyzing minerals in the ground. Predicting refinery sensor failure. Streamlining oil distribution to make it more efficient and cost-effective. The number of machine learning use cases for this industry is vast — and still expanding.

Retail

Websites recommending items you might like based on previous purchases are using machine learning to analyze your buying history. Retailers rely on machine learning to capture data, analyze it and use it to personalize a shopping experience, implement a marketing campaign, price optimization, merchandise supply planning, and for customer insights.

Transportation

Analyzing data to identify patterns and trends is key to the transportation industry, which relies on making routes more efficient and predicting potential problems to increase profitability. The data analysis and modeling aspects of machine learning are important tools to delivery companies, public transportation and other transportation organizations.

Why is machine learning so important?

Resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. Things like growing volumes and varieties of available data, computational processing that is cheaper and more powerful, and affordable data storage.

All of these things mean it’s possible to quickly and automatically produce models that can analyze bigger, more complex data and deliver faster, more accurate results — even on a very large scale. And by building precise models, an organization has a better chance of identifying profitable opportunities — or avoiding unknown risks.

Image for post
Image for post

Why is machine learning so successful?

While machine learning is not a new technique, interest in the field has exploded in recent years.

This resurgence comes on the back of a series of breakthroughs, with deep learning setting new records for accuracy in areas such as speech and language recognition, and computer vision.

What’s made these successes possible are primarily two factors, one being the vast quantities of images, speech, video and text that is accessible to researchers looking to train machine-learning systems.

But even more important is the availability of vast amounts of parallel-processing power, courtesy of modern graphics processing units (GPUs), which can be linked together into clusters to form machine-learning powerhouses.

Today anyone with an internet connection can use these clusters to train machine-learning models, via cloud services provided by firms like Amazon, Google and Microsoft.

As the use of machine-learning has taken off, so companies are now creating specialized hardware tailored to running and training machine-learning models. An example of one of these custom chips is Google’s Tensor Processing Unit (TPU), the latest version of which accelerates the rate at which machine-learning models built using Google’s TensorFlow software library can infer information from data, as well as the rate at which they can be trained.

These chips are not just used to train models for Google DeepMind and Google Brain, but also the models that underpin Google Translate and the image recognition in Google Photo, as well as services that allow the public to build machine learning models using Google’s TensorFlow Research Cloud. The second generation of these chips was unveiled at Google’s I/O conference in May last year, with an array of these new TPUs able to train a Google machine-learning model used for translation in half the time it would take an array of the top-end GPUs, and the recently announced third-generation TPUs able to accelerate training and inference even further.

As hardware becomes increasingly specialized and machine-learning software frameworks are refined, it’s becoming increasingly common for ML tasks to be carried out on consumer-grade phones and computers, rather than in cloud data centers. In the summer of 2018, Google took a step towards offering the same quality of automated translation on phones that are offline as is available online, by rolling out local neural machine translation for 59 languages to the Google Translate app for iOS and Android.

Reference

Blog, H. L. O. T. S. D. S. (2017, 12 abril). Which machine learning algorithm should I use? The SAS Data Science Blog. https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

Heath, N. (2018, 14 septiembre). What is machine learning? Everything you need to know. ZDNet. https://www.zdnet.com/article/what-is-machine-learning-everything-you-need-to-know/

Team, E. S. (2020, 29 mayo). What is Machine Learning? A definition. Expert System. https://expertsystem.com/machine-learning-definition/#:%7E:text=Machine%20learning%20is%20an%20application,use%20it%20learn%20for%20themselves.

Team, E. S. (2020, 29 mayo). What is Machine Learning? A definition. Expert System. https://expertsystem.com/machine-learning-definition/#:%7E:text=Machine%20learning%20is%20an%20application,use%20it%20learn%20for%20themselves.

Written by

Holberton school student.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store